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D E C E L E R A T I O N  OF A S T R O N G  S H O C K  W A V E  

B Y  A T R A N S V E R S E  M A G N E T I C  F I E L D  A T  S U B S T A N T I A L  

M A G N E T I C  R E Y N O L D S  N U M B E R S  

D.  A.  B u t  a n d  B.  A .  S l u c h a k  UDC538.6 

Strong ionizing shock waves  can be  used for  obtaining s t rong  magnet ic  f ie lds  and h igh-powered s h o r t -  
durat ion pulses  of e l ec t r i ca l  energy.  The mot ionless  gas ahead of the wave f ron t  is cold and nonconducting, 
while behind the f ront  the gas  moves  at  high speed and has cons iderab le  e l ec t r i ca l  conductivity because  of its 
high t e m p e r a t u r e .  ~ The in teract ion of the h igh-veloc i ty  conductive s t r e a m  produced by the ionizing shock wave 
with the magne t i c  and e lec t r i c  field can be  uti l ized in va r ious  appl icat ions,  one of which is magnet ic  cumula -  
t ion, i .e. ,  t r a n s f o r m a t i o n  of the ene rgy  of the wave into the ene rgy  of a c o m p r e s s e d  magnet ic  f ield and its sub-  
sequent uti l ization fo r  va r ious  purposes  [1]. Another  subject  of g rea t  in te res t  is the uti l ization of ionizing 
shock waves  moving in a t r a n s v e r s e  magnet ic  f ie ld  for  studying the effects  of the T l ayer  [2]. 

A theore t ica l  invest igat ion of the in teract ion of an ionizing shock wave with a t r a n s v e r s e  magnet ic  field 
at substant ia l  magnet ic  Reynolds number s  can be c a r r i e d  out in the mos t  comple te  f o r m  by using di rec t  f in i te-  
d i f ference  methods which p resuppose  the ut i l izat ion of implici t  conse rva t ive  calcula t ion s chemes  [3, 4]. 

Analytic solutions of such p rob l ems  a r e  only pa r t i a l  solut ions and s e r v e  to make  c l ea r  only the qual i ta -  
t ive aspec t s  of  the p r o c e s s e s  taking place.  

One of the modif icat ions of the n u m e r i c a l  methods for  solving the p rob l em of the in teract ion of an ionizing 
shock wave with a magnet ic  f ield is based  on singling out a hyperbol ic  s u b s y s t e m  f r o m  the or ig inal  equations 
and solving this s u b s y s t e m  by the method of c h a r a c t e r i s t i c s  in combinat ion with a d i rec t  n u m e r i c a l  solution of 
the other  equat ions .  Although such an approach  imposes  additional r e s t r i c t i ons  on the calculat ion model for  the 
p rob l em (no v i scos i ty ,  etc.) ,  it makes  it poss ib le  to use  an explicit  d i f ference  scheme  for  solving a nonlinear 
hyperbol ic  subsys t em,  which makes  the t ime  requ i red  for  solving the p rob l em on an e lec t ronic  compute r  con- 
s ide rab ly  sho r t e r  than the computat ion t ime  for  d i rec t  d i f ference  a lgor i thms.  

1. Calculation Model and T rans fo rm a t ion  of the Original Sys tem of Equations. We cons ider  a model (Fig. 
1) s im i l a r  to the cu r r en t  gr id  used in the exper imen t s  of [5]. The re  is a plane reg ion  bounded by a highly con-  
ductive H-shaped  f r a m e ,  into which a s t rong  ionizing shockwave  en te rs  with veloci ty  w(w, 0, 0). Within the 
f r a m e ,  for  x_>0, we have a magnet ic  field Be(0, B e, 0). The conductive gas behind the wave moves  with veloci ty  
u(u, 0, 0). Because  of the F a r a d a y  effect,  in this gas the re  a r e  cu r r en t s  with densi ty j(0, 0, j), c los ing along 
the f r a m e ,  which s t rengthen the magnet ic  f ield B(0, B, 0) within the f r a m e  and dece le ra te  the gas and the shock 
wave. The energy  of the shock wave is t r a n s f o r m e d  into magnet ic  field energy  and Joule l o s ses  in the gas.  

The model  desc r ibed  above a lso  co r re sponds  to a coaxial  channel with a r e l a t ive ly  sma l l  gap along the 
radius  (the z di rect ion in Fig: 1). 

In the analys is  given below we shall  neglect  the Hall effect ,  s ince the p r e s s u r e  behind the wave f ront  is 
high; we shal l  a lso neglect  the e l e c t r i c a l  boundary effects ,  s ince  the e lec t r i ca l  connection is sho r t - c i r cu i t ed .  
These  assumpt ions  e n a b l e  us to use a one-d imens iona l  approximat ion  in solving the p rob lem.  

The interact ion of the gas behind the wave f ront  with the magnet ic  f ield is desc r ibed  by  nons ta t ionary  
equations of motion,  cont inui ty ,  and energy,  Maxwell, s equations,  and Ohm,s law, which in d imens ion less  fo rm ,  
for  an ideal per fec t  gas ,  a r e  
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Ou Ou , Eu0p S" B 
o---[+u~ r p Ox = - -  1-~; 

Op Ou , 09 
a-T §  ' r  U-~x = O; 

Op Ou S i 2 -~-+ vp~ + u ~-~.P~ =-~(~'- I)T; 

OB 
a"~ = Rem]; 

OE OB T E = ~ - ;  

i = (KuB + E), 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 
(1.6) 

where  p, p ,  ~, T a r e  the p r e s s u r e ,  densi ty,  conductivity,  and adiabatic  exponent of the gas,  r e spec t ive ly ;  E is 
the e lec t r ic  f ield s t rength;  Eu =Po/P 0u0 ~ is the Euler  number ;  S = %B~ol/p 0u0 is the interact ion p a r a m e t e r ;  R e m =  
g0%u0/ is the magnet ic  Reynolds number ;  the subsc r ip t  0 indicates the bas i s  values of the p a r a m e t e r s ;  t ime is 
r e f e r r e d  to l / u  o and d imensions ,  to l .  The equations a r e  wri t ten  in the l abo ra to ry  s y s t e m  of coordinates .  
Changing to a noniner t ia l  s y s t e m  bound to the wave f ront  would compl ica te  the p r o b l e m  in this case .  The con-  
ductivity of the gas is an a r b i t r a r y  function of p and p : 

= ~(p, p). (1.7) 

In pr inciple ,  the method admits  of specifying ~ in the f o r m  a(p,  p ,  j, ]3) with the nonequi l ibr ium effects  and the 
Hall effect  taken into account. The use of a p e r f e c t - g a s  model is a lso nonessent ia l  for  the analys is .  To inves t i -  
gate nonperfect  gases  and gas composi t ions ,  we must  use  a genera l  energy equation and a concre te  equation of 
s ta te  of the gas.  

Equations (1.1)-(1.7) mus t  be supplemented  by re l a t ions  between the p a r a m e t e r s  on the f ront  of the shock 
wave. We a s s u m e  that ionization of the gas  takes  place  immedia te ly  behind the f ront  and that the wave is ga s -  
dynamic.  In addition, the wave mus t  be  suff icient ly s t rong  to ionize the gas.  The re fo re ,  we can use  the known 
re la t ions  on the f ront  in the f o r m  

P~/P~ ~ ("t -F 'l_)l(y - -  1); (1 .8 )  
Pw ~_ 2? 2 
po-'-~ :~ + I Mw; (I. 9) 

w / u .  _~ (? -I- t ) t2 .  (I.i0) 

Here  the subsc r ip t  w co r r e sponds  to the p a r a m e t e r s  immedia te ly  behind the f ront ,  the subscr ip t  00 r e f e r s  to 
the p a r a m e t e r s  of the unper turbed gas,  and Mw = w / a  00, where  a 00 is the speed of sound in the gas ahead of the 
wave front .  

F o r m u l a s  (1.8)-(1.10) a r e  n e c e s s a r y  for  finding the t r a j e c t o r y  of the wave f ront  and determining the 
boundary  conditions on the front  line. 

The fundamental  equations (1.1)-(1.6) f o r m  a quas i l inear  parabol ica l ly  degenera te  s y s t e m  [6]. A solution 
mus t  be  cons t ruc ted  in a reg ion  with a va r i ab l e  boundary,  whose posit ion is de te rmined  by integrat ing w with 
r e s p e c t  t ~ t. 

The authors  of [7] p ropose  to solve a s y s t e m  s imi l a r  to (1.1)-(1.6) by a r t i f ic ia l ly  rep lac ing  the hyperbol ic  
f o r m  and then using the method of c h a r a c t e r i s t i c s .  This  substi tut ion is c a r r i e d  out by introducing p a r a m e t r i c  
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functions r e p r e s e n t i n g  some  a v e r a g e  values  of the spa t ia l  de r iva t ives  of the magnet ic  induction. Similar  t r a n s -  
fo rmat ions  may  be found effect ive for  a number  of p rob l ems ;  however ,  in the p re sen t  ca se  they r equ i r e  m a s s i v e  
i tera t ions  for  r e a l  calculat ions.  

Another poss ib i l i ty  of us ing the method of c h a r a c t e r i s t i c s  for  solving the or ig ina l  s y s t e m  is based  on the 
fact  that the f i r s t  four equations f o r m  a hyperbol ic  s y b s y s t e m  whose solution can be combined block by  block 
with the solutions of Eqs. (1.5} and (1.6). 

It should be  noted that in p rob l ems  with a potential  e lec t r ic  field,  when instead of Eqs. (1.5}, (1.6} we use  
the equation of the ex te rna l  e lec t r i c  c i rcui t ,  we can also use  an in te rmedia te  solution of a hyperbol ic  s u b s y s t e m  
and then join it to the equation of the externa l  c i rcui t  [8]. 
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In [9] it was pointed out that the method of c h a r a c t e r i s t i c s  can  be used for  cons t ruc t ing  computat ion 
a lgor i thms  for  the s y s t e m  (1.1)-(1.6) by introducing s o m e  conditional p a r a m e t r i c  function analogous to induc- 
tance. 

We f i r s t  invest igate  the hyperbol ic  s u b s y s t e m  (1.1)-(1.4) descr ib ing  the var ia t ion  of u, p, p ,  and B. 

The c h a r a c t e r i s t i c  n o r m a l  f o r m  equivalent to this is 

dB/dx = Re,d along (dx/dt)i =oo; (1.11) 
Eudp/dt --  A~dp/dt = [(~? - -  l)/a]S] s along (dx/dt)ii= u; (1.12) 

Eudp/dt+Apdu/dt=S][@--l)( j /o)--AB] along (dx/dt)uI= u+A;  (1.13) 
Eudp/dt--Apdu/dt-=S][(7--i)(j/a)+ AB ] along (dx/dt)iv = u- -A,  (1.14) 

where  A = 4 E u T p / p  is the d imens ion less  speed of sound. 

tion 
The second s u b s y s t e m  (1.5), (1.6), if we take account of the condit ionE(0,  0 =0, r educes  to the single equa-  

x �9 

j =  ~ uB + - ~  Bdx . (1.15) 
0 ] 

In fo rmula t ing  the boundary  condit ions,  we a s s u m e  that at the inlet the gas p a r a m e t e r s  r e m a i n  unper -  
tu rbed  and that the magnet ic  induction is equal to the induction of the external  f ield Be. The f i r s t  assumpt ion  is 
made  because  the gas  moves  at supersonic  speed ahead of the f ront ,  while the second is de te rmined  by the 
se lec ted  geome t ry  of the model ,  in which all cu r r en t s  a r e  c losed  to the r ight  of the inlet and do not a f fec tB(0 , t ) .  
The inlet values  of the p a r a m e t e r s  a r e  cons idered  the bas i s  quanti t ies in Eqs. (1.1}-(1.6}. Thus,  we have 

u(0, t ) =  p(0, t ) =  p(0, t ) =  B(0, t ) =  t, (1.16) 
E(o, t) = o. 

The condition for  E a g r e e s  with the fact  that E - 0 when x < 0. The conditions for  u, p, and p a r e  not s t r i c t  con-  
ditions, s ince at the inlet t he re  is a finite cu r r en t  densi ty j0=~0u0B0 which affects  the s t r e a m .  However,  in 
p rac t i ca l  c a se s  the quanti t ies  cr 0 and B 0 a r e  smal l  in compar i son  with the i r  f inal  va lues ,  and the p a r a m e t e r  S 
ca lcula ted  on the bas i s  of the inlet values  is also smal l .  

The second group of boundary  conditions is de te rmined  on the front  by fo rmu la s  (1.8)-(1.10}. For  the 
d imens ion less  quant i t ies  we have 

p ~ = t ;  p~,=u~;  w=V~'.21u~. 

The Euler  number  Eu in the p resen t  ease  is constant  and equal to ( T -  1)/2. 

2. Solution of the Sys tem of Equations.  Numer ica l  Resul ts .  The s imul taneous  solution of Eqs. (1.11)- 
(1.15) with the boundary  conditions (1.16), (1.17) was c a r r i e d  out as follows. The xt phase  plane was subdivided 
by a r ec tangu la r  gr id  into cel ls .  The cel l  d imension At was kept constant.  The dimension Axi was defined at 
each t i m e  s tep as wiAt. Thus,  on the wave f ront  we always had the points (i, i) (Fig. 2). The calculat ion was 
c a r r i e d  out f r o m  bot tom to top and f r o m  left to r ight  in the xt plane. The s u b s y s t e m  (1.11)-(1.14) was solved 
n u m e r i c a l l y  along the c h a r a c t e r i s t i c  in tervals  by E u l e r ' s  method,  which enabled us to find the values  of u, p, p ,  
B at the point ([, k) f r o m  the co r respond ing  values  of the quanti t ies  at the th ree  adjacent  nodal  points  (i - 1, k), 
(i - 1 ,k  - 1), (i, k - 1). The p a r a m e t e r s  at the points a ,  b, c, f r o m  which emanate  the c h a r a c t e r i s t i c s  1I, Ili, 
IV in te rsec t ing  at the point (i, k), we re  found by l inear  interpolat ion between the cor responding  quanti t ies at the 
nodal points. The conductivi ty ~ at the point (i, k) was de te rmined  f r o m  Eq. (1.7), and the s t r e a m  density was 
de te rmined  f r o m  Eq. (1.15). The p r e l i m i n a r y  value of j was e s t ima ted  as 

]th=~ih( ulhBih-~ r 1 6 2  ' A t  

where  the magnet ic  flux ~ ik  was found by numer i ca l  integrat ion of B with r e s p e c t  to x. Then, a f ter  pass ing  to 
the (k + l ) - t h  l ayer ,  we found the value of j m o r e  p r e c i s e l y  by the fo rmu la  

The a lgor i thm for  finding the p a r a m e t e r s  on the w a v e f r o n t  is somewhat  different.  This is due to the fact  
that c h a r a c t e r i s t i c s  1I and IV ,,do not ca tch  up with,  the front ,  and the re fo re  Eqs. (1.12), (1.14) cannot be used 
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there .  Instead of them,  we have act ing at the f ront  the f i r s t  two re la t ions  of (1.17). The th i rd  re la t ion  of (1.17) 
gives  us the speed of the f ront  w and the t r a j e c t o r y  of the wave on the xt  d i a g r a m  within the l imi t s  of each  suc -  
c e s s i v e  t ime  step.  

The calculat ions w e r e  c a r r i e d  out for  ~, =S/3 ,  S=0.05,  and Re m =5. F igures  3-7 show the va r ia t ion  of the 
p a r a m e t e r s  in the gas behind the wave front  for  ~ = 1 and cr = T3/2p-4/~ (the solid and dashed cu rves ,  respec t ive ly)  
for  var ious  values  of t [curve 1) t =0.3; 2) t=0 .4 ;  3) t =0.5; 4) t =0.6]. The t e m p e r a t u r e  T was defined as p/p. 
The f igures  show how the wave is dece le ra ted  by the magnet ic  f ie ld and how behind the f ront  t he re  is f o r m e d  a 
r e f l ec ted  c o m p r e s s i o n  wave whose intensi ty i nc rea se s  with t ime.  It may  be a s sumed  that as Re m inc reases  
(while p r e s e r v i n g  finite va lues  of S), this  wave becomes  a r e f l ec t ed  shock wave whose behavior  is descr ibed ,  
for  examPle , in [10]. 

A c h a r a c t e r i s t i c  f ea tu re  is the fo rma t ion  of a zone with a t e m p e r a t u r e  m . x i m u m  that  i nc reases  with t ime,  
moving behind the wave front .  The  var ia t ion  of ~ as a function of T and p s t rengthens  the intensi ty of the in te r -  
actinu of the wave with the magnet ic  f ield and leads to the fo rma t ion  of a zone with m a x i m u m  j behind the front .  
Additional ca lcula t ions  showed that when ~ =T3p-1/~ , the indicated effects  a r e  even m o r e  pronounced. 

As was to be  expected,  the intensif icat ion of the magnet ic  field ahead of the wave f ront  is cons iderab ly  
weaker  tban for  the s a m e  values of Re m in s t a t iona ry  flow, when for  c lo su re  of the e lec t rodes  on the r ight  the 
field i nc reases  with length like e Remx  . This is a t t r ibutable  to the act ion of the vor tex  e lec t r i c  f ield which 
makes  j i nc r ea se  m o r e  s lowly with t ime.  

The a c c u r a c y  of the ca lcula t ions  was ver i f i ed  by se lec t ive  subst i tut ion of the n u m e r i c a l  r e s u l t s  obtained 
into the or ig ina l  s y s t e m  (1.1)-(1.6). For  a s tep  At =0.025 the a v e r a g e  of the m~ximum e r r o r  was ~ 10% of the 
t e r m s  with s m , H e s t  absolute  value. The computat ion was continued until the magnet ic  induction on the f ront  
r eached  the l imit ing values .  The computat ion for  one r e g i m e  took 15 rain of machine  t i m e  on the M-220 e lec -  
t ronic  computer .  

For  l a rge  values  of Re m and S the a lgor i thm can eas i ly  be  improved  by  introducing i tera t ion cyc les .  

The authors  a r e  gra teful  to S. M.-A. Koneev for  his valuable  commen t s  on the work.  
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